The transcription factor SREBP-1c is instrumental in the development of beta-cell dysfunction.
نویسندگان
چکیده
Accumulation of lipids in non-adipose tissues is often associated with Type 2 diabetes and its complications. Elevated expression of the lipogenic transcription factor, sterol regulatory element binding protein-1c (SREBP-1c), has been demonstrated in islets and liver of diabetic animals. To elucidate the molecular mechanisms underlying SREBP-1c-induced beta-cell dysfunction, we employed the Tet-On inducible system to achieve tightly controlled and conditional expression of the nuclear active form of SREBP-1c (naSREBP-1c) in INS-1 cells. Controlled expression of naSREBP-1c induced massive accumulation of lipid droplets and blunted nutrient-stimulated insulin secretion in INS-1 cells. K(+)-evoked insulin exocytosis was unaltered. Quantification of the gene expression profile in this INS-1 stable clone revealed that naSREBP-1c induced beta-cell dysfunction by targeting multiple genes dedicated to carbohydrate metabolism, lipid biosynthesis, cell growth, and apoptosis. naSREBP-1c elicits cell growth-arrest and eventually apoptosis. We also found that the SREBP-1c processing in beta-cells was irresponsive to acute stimulation of glucose and insulin, which was distinct from that in lipogenic tissues. However, 2-day exposure to these agents promoted SREBP-1c processing. Therefore, the SREBP-1c maturation could be implicated in the pathogenesis of beta-cell glucolipotoxicity.
منابع مشابه
Sterol regulatory element-binding proteins activate insulin gene promoter directly and indirectly through synergy with BETA2/E47.
Insulin gene expression is regulated by pancreatic beta cell-specific factors, PDX-1 and BETA2/E47. Here we have demonstrated that the insulin promoter is a novel target for SREBPs established as lipid-synthetic transcription factors. Promoter analyses of rat insulin I gene in non-beta cells revealed that nuclear SREBP-1c activates the insulin promoter through three novel SREBP-binding sites (S...
متن کاملSilibinin protects β cells from glucotoxicity through regulation of the Insig-1/SREBP-1c pathway.
Exposure to high glucose may cause glucotoxicity, leading to pancreatic β cell dysfunction including cell apoptosis, impaired glucose‑stimulated insulin secretion (GSIS) and intracellular lipid accumulation. Sterol regulatory element binding protein-1c (SREBP-1c), a key nuclear transcription factor that regulates lipid metabolism, has been proven to play a role in insulin secretion. Insulin ind...
متن کاملTransgenic Mice Overexpressing Nuclear SREBP-1c in Pancreatic -Cells
Influx of excess fatty acids and the resultant accumulation of intracellular triglycerides are linked to impaired insulin secretion and action in the pathogenesis of type 2 diabetes. Sterol regulatory element–binding protein (SREBP)-1c is a transcription factor that controls cellular synthesis of fatty acids and triglycerides. SREBP-1c is highly expressed in high-energy and insulin-resistant st...
متن کاملProtein kinase Cbeta mediates hepatic induction of sterol-regulatory element binding protein-1c by insulin.
Sterol-regulatory element binding protein-1c (SREBP-1c) is a transcription factor that controls lipogenesis in the liver. Hepatic SREBP-1c is nutritionally regulated, and its sustained activation causes hepatic steatosis and insulin resistance. Although regulation of SREBP-1c is known to occur at the transcriptional level, the precise mechanism by which insulin signaling activates SREBP-1c prom...
متن کاملHepatic insig-1 or -2 overexpression reduces lipogenesis in obese Zucker diabetic fatty rats and in fasted/refed normal rats.
To determine whether the antilipogenic actions of insulin-induced gene 1 (insig-1) demonstrated in cultured preadipocytes also occur in vivo, we infected Zucker diabetic fatty (ZDF) (fa/fa) rats, with recombinant adenovirus containing insig-1 or -2 cDNA. An increase of both proteins appeared in their livers. In control ZDF (fa/fa) rats infected with adenovirus containing the beta-galactosidase ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of biological chemistry
دوره 278 19 شماره
صفحات -
تاریخ انتشار 2003